Добавить работы Отмеченные0
Работа успешно отмечена.

Отмеченные работы

Просмотренные0

Просмотренные работы

Корзина0
Работа успешно добавлена в корзину.

Корзина

Регистрация

интернет библиотека
Atlants.lv библиотека
Особые предложения 2 Открыть
  • Standartizēts normālais sadalījums. Normālā sadalījuma lietošana - netiešie uzdevumi: dotas varbūtības uzdevums. Hipotēze par relatīvajiem biežumiem

     

    Конспект10 Математика

5,99 € В корзину
Добавить в список желаний
Хочешь дешевле?
Идентификатор:688081
 
Автор:
Оценка:
Опубликованно: 25.05.2004.
Язык: Латышский
Уровень: Университет
Литературный список: Нет
Ссылки: Не использованы
Содержание
Nr. Название главы  Стр.
1.  Normālais sadalījums    2
1.1.  Normālā sadalījuma funkcijas un grafiskie attēli    2
1.1.1.  Diferenciālā un integrālā funkcija, to grafiskie attēli    2
1.1.2.  Normālā sadalījuma parametri    3
1.1.3.  Standartizēts normālais sadalījums    4
1.2.  Normālā sadalījuma lietošana    6
1.2.1.  Netiešie uzdevumi: dotās varbūtības intervāls    6
2.  Hipotēze par relatīvajiem biežumiem    9
2.1.  Nulles hipotēzes pārbaude par divu relatīvo biežumu starpību    9
2.2.  Relatīvā biežuma vērtēšana    10
2.3.  Relatīvā biežuma vērtēšana ja tas izlasē ir ļoti mazs vai ļoti liels skaitlis    11
Фрагмент работы

Normālajam sadalījuma likumam visās dabaszinātnēs ir fundamentālā nozīme, tai skaitā arī fizikā. Pats vispārinātākais normālā sadalījuma likuma raksturojums ir vienkāršs tāda likumsakarīga fakta novērojums, ka ļoti liels centrālās novirzes (Xi – M(x)) sastopamas ļoti reti, bet mazas bieži, pie kam pēc moduļa vienādas novirzes ir vienādi iespējamas. Tāda likumsakarība iespējama apstākļos, kad uz gadījuma lielumu X iedarbojas liels skaits visdažādāko faktoru, un katra šāda faktora iedarbības daļa ir vienādi maza salīdzinājumā ar to skaitu.
Normālā sadalījuma funkcijas un grafiskie attēli
Diferenciālā un integrālā funkcija, to grafiskie attēli
Dabas un sociālajās zinātnēs pētāmie objekti un parādības parasti veido sadalījumus ar izteiktu vienību koncentrāciju sadalījuma centrā. Izdarot grupēšanu pēc pētāmās pazīmes un izgatavojot tam atbilstošo stabiņu diagrammu (histogrammu), iegūstam raksturīgu piramīdveida figūru. Ja novērojumu skaits ir liels un grupēšanas intervāli mazi, šī piramīda tuvojas īpašai figūrai, ko ierobežo zvanveida līkne, t.s. Gausa līkne. Tas ir normālā sadalījuma diferenciālās funkcijas grafiskais attēls (skat. 1.1. attēlu). Tātad normālais sadalījums ir robeža, uz kuru teicas daudzi empīriskie sadalījumi. Normālo sadalījumu var uzlūkot par šo empīrisko sadalījumu matemātisko modeli.
Empīriskā sadalījuma uzkrāto biežumu stabiņu diagrammas virsotnes, savukārt, labi apraksta īpaša S veida līkne, kas ir normālā sadalījuma integrālā funkcija (1.2. attēls).
Normālā sadalījuma likumam ir fundamentāla nozīme dažādu mērījumu un citu kvantitatīvu novērojumu kļūdu izvērtēšanā.
Normālā sadalījuma funkcijās ir divi parametri, skaitliskas konstantes, kas dažādos uzdevumos ir dažādi.
1.x – gadījumlieluma vidējā vērtība (uzdevuma robežās konstante; dažādos uzdevumos dažādi lielumi).
2.S – gadījumlieluma standartnovirze (uzdevuma robežās konstante, dažādos uzdevumos dažādi lielumi).…

Коментарий автора
Комплект работ:
ВЫГОДНО купить комплект экономия −3,98 €
Комплект работ Nr. 1137825
Загрузить больше похожих работ

Atlants

Выбери способ авторизации

Э-почта + пароль

Э-почта + пароль

Неправильный адрес э-почты или пароль!
Войти

Забыл пароль?

Draugiem.pase
Facebook

Не зарегистрировался?

Зарегистрируйся и получи бесплатно!

Для того, чтобы получить бесплатные материалы с сайта Atlants.lv, необходимо зарегистрироваться. Это просто и займет всего несколько секунд.

Если ты уже зарегистрировался, то просто и сможешь скачивать бесплатные материалы.

Отменить Регистрация