Добавить работы Отмеченные0
Работа успешно отмечена.

Отмеченные работы

Просмотренные0

Просмотренные работы

Корзина0
Работа успешно добавлена в корзину.

Корзина

Регистрация

интернет библиотека
Atlants.lv библиотека
Особые предложения 2 Открыть
4,49 € В корзину
Добавить в список желаний
Хочешь дешевле?
Идентификатор:711587
 
Автор:
Оценка:
Опубликованно: 17.12.2009.
Язык: Латышский
Уровень: Университет
Литературный список: 2 единиц
Ссылки: Не использованы
Содержание
Nr. Название главы  Стр.
  Ievads, pamatjēdzieni    3
1.  Diferenciālvienādojumi    4
1.1.  Pirmās kārtas diferenciālvienādojumi    4
1.1.1.  Lineāri pirmās kārtas diferenciālvienādojumi    5
1.2.  Otrās kārtas nepilnie diferenciālvienādojumi    6
1.3.  Otrās kārtas lineāri homogēni diferenciālvienādojumi ar konstantiem koeficientiem    6
1.4.  Diferenciālvienādojumu pielietojums fizikā    8
  Secinājumi    10
  Izmantotā literatūra    11
Фрагмент работы

Pirms mēs sākam runāt par diferenciālvienādojumiem noskaidrosim, ko īsti nozīmē atvasināt un integrēt, jo diferenciālvienādojumi ir tieši saistīti ar atvasināšanu un integrēšanu.
Integrāļiem izšķir 2 veidus: noteiktais integrālis un nenoteiktais integrālis. Noteiktais integrālis no nenoteiktā integrāļa atšķiras ar to, ka aprēķinot nenoteikto integrāli mēs iegūstam vispārēju funkciju, bet noteiktajā integrālī mēs iegūstam konkrētu skaitli.
Funkciju sauc par funkcijas primitīvo funkciju intervālā , ja katrā šī intervāla punktā tās atvasinājums ir vienāds ar . Funkcijas primitīvās funkcijas atrašana pēc tās atvasinājuma ir diferencēšanas darbības apgrieztā darbība - integrēšana.
Diferenciālvienādojumu sauc par parasto diferenciālvienādojumu, ja nezināmā funkcija ir viena argumenta funkcija. Bet par diferenciālvienādojuma kārtu sauc vienādojumā ietilpstošo atvasinājumu augstāko kārtu. Par diferenciālvienādojuma atrisinājumu sauc funkciju, kuru ievietojot dotajā vienādojumā, iegūst pareizu vienādību. Par difernciālvienādojuma partikulāro atrisinājumu sauc atrisinājumu, ko iegūst no vispārīgā atrisinājuma, piešķirot konstantēm noteiktas skaitliskas vērtības. To vērtības nosaka, izmantojot argumenta un funkcijas sākumvērtības.
Kā viens no diferenciālvienādojumu pielietojumiem fizikā ir svārstību vienādojums. Svārstību procesam ir svarīga nozīme mūsdienu tehnikā un fizikā. Tos parasti apraksta otrās kārtas lineāri diferenciālvienādojumi (ja ir runa par lineārām svārstībām), kuru koeficienti vienkāršākajos gadījumos ir konstanti.…

Коментарий автора
Комплект работ:
ВЫГОДНО купить комплект экономия −4,98 €
Комплект работ Nr. 1120999
Загрузить больше похожих работ

Atlants

Выбери способ авторизации

Э-почта + пароль

Э-почта + пароль

Неправильный адрес э-почты или пароль!
Войти

Забыл пароль?

Draugiem.pase
Facebook

Не зарегистрировался?

Зарегистрируйся и получи бесплатно!

Для того, чтобы получить бесплатные материалы с сайта Atlants.lv, необходимо зарегистрироваться. Это просто и займет всего несколько секунд.

Если ты уже зарегистрировался, то просто и сможешь скачивать бесплатные материалы.

Отменить Регистрация