4 ЗАКЛЮЧЕНИЕ
Нейронные сети возникли из исследований в области искусственного интеллекта, а именно, из попыток воспроизвести способность биологических нервных систем обучаться и исправлять ошибки. Такие системы основывались на высокоуровневом моделировании процесса мышления на обычных компьютерах. Скоро стало ясно, чтобы создать искусственный интеллект, необходимо построить систему с похожей на естественную архитектурой, т. е. перейти от программной реализации процесса мышления к аппаратной. Естественным продолжением аппаратного и программного подхода к реализации нейрокомпьютера является программно-аппаратный подход. Аппаратный подход связан с созданием нейрокомпьютеров в виде нейроподобных структур (нейросетей) электронно-аналогового, оптоэлектронного и оптического типов. Для таких компьютеров разрабатываются специальные СБИС (нейрочипы). Основу нейросетей составляют относительно простые, в большинстве случаев - однотипные, элементы (ячейки), имитирующие работу нейронов мозга - искусственные нейроны. Нейрон обладает группой синапсов - однонаправленных входных связей, соединенных с выходами других нейронов, а также имеет аксон – выходную связь данного нейрона, с которой сигнал (возбуждения или торможения) поступает на синапсы следующих нейронов. Каждый синапс характеризуется величиной синаптической связи или ее весом, который по физическому смыслу эквивалентен электрической проводимости в электрических связях. Для решения отдельных типов задач существуют оптимальные конфигурации нейронных сетей. Если же задача не может быть сведена ни к одному из известных типов, разработчику приходится решать сложную проблему синтеза новой конфигурации. При этом он руководствуется несколькими основополагающими принципами: возможности сети возрастают с увеличением числа ячеек сети, плотности связей между ними и числом слоев нейронов. …