Добавить работы Отмеченные0
Работа успешно отмечена.

Отмеченные работы

Просмотренные0

Просмотренные работы

Корзина0
Работа успешно добавлена в корзину.

Корзина

Регистрация

интернет библиотека
Atlants.lv библиотека
4,49 € В корзину
Добавить в список желаний
Хочешь дешевле?
Идентификатор:321752
 
Оценка:
Опубликованно: 03.03.2011.
Язык: Латышский
Уровень: Университет
Литературный список: 5 единиц
Ссылки: Использованы
Содержание
Nr. Название главы  Стр.
  Ievads    3
1.  Pamatjēdzieni un definīcijas    3
1.1.  Notikumi varbūtību teorijas izpratnē    3
1.2.  Varbūtības definīcijas    4
1.3.  Varbūtības galvenās īpašības    6
2.  Vienkāršākās darbības ar varbūtībām    7
2.1.  Nesavienojamu notikumu varbūtību saskaitīšana    7
2.2.  Neatkarīgu notikumu varbūtību reizināšana    8
2.3.  Varbūtību vienādojumi un vienādojumu sistēmas    10
3.  Darbības ar savstarpēji atkarīgu notikumu varbūtībām    10
3.1.  Nosacītā varbūtība    10
3.2.  Nosacīto varbūtību reizināšana    11
3.3.  Savienojamu notikumu varbūtību saskaitīšana    11
4.  Vidējās un pilnās varbūtības formulas. Beijesa formula    12
4.1.  Vidējā un pilnā varbūtība    12
4.2.  Beijesa formula    15
5.  Atkārtoti novērojumi. Bernulli formula un Ņutona bioms    16
  Kopsavilkums    18
  Izmantotā literatūra un interneta resursi    19
Фрагмент работы

1. Pamatjēdzieni un definīcijas
1.1. Notikumi varbūtību teorijas izpratnē
Ar notikumu varbūtību teorijā saprot jebkuru faktu, kuru var konstatēt novērojuma vai izmēģinājuma rezultātā. Par novērojumu vai izmēģinājumu sauc zināmu apstākļu realizāciju, kā rezultātā var iestāties notikums. Izmēģinājums notiek tad, kad ieinteresētais aktīvi rada apstākļu kompleksu, savukārt novērojuma gaitā novērotājs pats apstākļu kompleksu nerada. Visus notikumus var iedalīt droši sagaidāmos, neiespējamos un gadījuma jeb nejaušos notikumos. Ja ir izveidojusies noteikta apstākļu kopa, tad droši sagaidāms notikums iestājas vienmēr, neiespējami notikumi noteikti nenotiek, bet gadījuma (nejaušie) notikumi var notikt un var arī nenotikt. Piemēram [5, 5.], sportistam metot rīku (disku, šķēpu vai granātu), nenovēršams notikums ir rīka piezemēšanās pēc lidojuma, bet neiespējams notikums – ka rīks tam piešķirtā paātrinājuma dēļ pārvarēs zemes pievilkšanas spēku un sāks riņķot ap zemi kaut kādā orbītā. Citi piemēri [3, 14.] – ja traukā ir ūdens, kura temperatūra ir 20 un ja atmosfēras spiediens ir normāls, tad notikums „ūdens traukā atrodas šķidrā stāvoklī” ir droši sagaidāms. Savukārt, ja, metot monētu, uzkrīt ģerbonis, tas ir nejaušs notikums. Šī gadījuma rašanos ietekmē vairāki grūti novērtējami faktori un nav iespējams ņemt vērā to ietekmi uz rezultātu.. Tādēļ varbūtību teorija nevar šādus notikumus paredzēt.
Par relatīvo biežumu sauc gadījuma notikuma iestāšanās skaita attiecību pret visu izmēģinājumu vai novērojumu skaitu galīga skaita mēģinājumos.
Gadījuma notikumus sauc par savienojamiem, ja tie var notikt kopēji viena novērojuma vai izmēģinājuma rezultātā – viena gadījuma notikuma iestāšanās neizslēdz otra gadījuma notikuma iestāšanos. Piemēram, aptaujājot kārtējo pircēju, kas ienāk veikalā (izdarot novērojumu), izrādās, ka tā ir sieviete (viens fakts jeb notikums) un latviete (otrs fakts jeb notikums). Šie notikumi ir savstarpēji savienojami.
Gadījuma notikumus sauc par nesavienojamiem, ja viena izmēģinājuma vai novērojuma rezultātā var notikt tikai viens no tiem, bet nav iespējama divu vai vairāku šo notikumu realizācija. Piemēram, ņemot no nesašķirotu detaļu kastes vienu izstrādājumu, tas var būt vai nu derīgs vai brāķis. Derīgas un brāķa detaļas paņemšana ir nesavienojami notikumi.[1,59.; 4, 54.]

Коментарий автора
Загрузить больше похожих работ

Atlants

Выбери способ авторизации

Э-почта + пароль

Э-почта + пароль

Неправильный адрес э-почты или пароль!
Войти

Забыл пароль?

Draugiem.pase
Facebook

Не зарегистрировался?

Зарегистрируйся и получи бесплатно!

Для того, чтобы получить бесплатные материалы с сайта Atlants.lv, необходимо зарегистрироваться. Это просто и займет всего несколько секунд.

Если ты уже зарегистрировался, то просто и сможешь скачивать бесплатные материалы.

Отменить Регистрация